Issues with uncertainty decoding for noise robust automatic speech recognition

نویسندگان

  • Hank Liao
  • Mark J. F. Gales
چکیده

Interest is growing in a class of robustness algorithms that exploit the notion of uncertainty introduced by environmental noise. The majority of these techniques share the property that the uncertainty of an observation due to noise is propagated to the recogniser, resulting in increased model variances. Using appropriate approximations, efficient implementations may be obtained, with the goal of achieving near model-based performance without the associated computational cost. Unfortunately, uncertainty decoding forms that compute the uncertainty in the front-end and pass this to the decoder may suffer from a theoretical problem in low signal-to-noise ratio conditions. This report discusses how this fundamental issue arises, and demonstrates it through two schemes: SPLICE with uncertainty and front-end Joint uncertainty decoding. A method to mitigate this in the Joint form is presented, as well as how SPLICE implicitly addresses it. However, it is shown that a model-based Joint uncertainty decoding approach does not suffer from this limitation, like these front-end forms do, and is also competitive computationally. The issues described and performance of the various schemes are examined on two artificially corrupted corpora: AURORA 2.0 digit recognition database and the thousand-word Resource Management task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Decoding for Noise Robust Automatic Speech Recognition

This report presents uncertainty decoding as a method for robust automatic speech recognition for the Noise Robust Automatic Speech Recognition project funded by Toshiba Research Europe Limited. The effects of noise on speech recognition are reviewed and a general framework for noise robust speech recognition introduced. Common and related noise robustness techniques are described in the contex...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Uncertainty Decoding with Adaptive Sampling for Noise Robust DNN-Based Acoustic Modeling

Although deep neural network (DNN) based acoustic models have obtained remarkable results, the automatic speech recognition (ASR) performance still remains low in noise and reverberant conditions. To address this issue, a speech enhancement front-end is often used before recognition to reduce noise. However, the front-end cannot fully suppress noise and often introduces artifacts that are limit...

متن کامل

Issues with uncertainty decoding for noise robust speech recognition

Recently there has been interest in uncertainty decoding for robust speech recognition. Here the uncertainty associated with the observation in noise is propagated to the recogniser. By using appropriate approximations for this uncertainty, it is possible to obtain efficient implementations during decoding. The aim of these schemes is to obtain performance which is close to that of a modelbased...

متن کامل

Investigations into Uncertainty Decoding Employing a Discrete Feature Space for Noise Robust Automatic Speech Recognition

This paper addresses the robustness of automatic speech recognition to environmental noise. In order to account for reliability of the clean feature estimate we employ the feature posterior density conditioned on observed noisy features to perform uncertainty decoding. We investigate two approaches to estimate the posterior using a discrete feature space, first conditioning only on the current ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Speech Communication

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2008